Example 6.10. Consider the following sequences of 1 s and 0 s which summarize the data obtained from 15 testees.

The " D " row indicates whether each of the testees actually has the disease under investigation. The "TP" row indicates whether each of the testees is tested positive for the disease.

Numbers " 1 " and " 0 " correspond to "True" and "False", respectively.

Suppose we randomly pick a testee from this pool of 15 persons. Let D be the event that this selected person actually has the disease. Let T_{P} be the event that this selected person is tested positive for the disease.

Find the following probabilities.
(a) $P(D)=\frac{8}{15} \quad$ Among the 15 testees, 8 have the disease.
(b) $P\left(D^{c}\right)=\frac{7}{15} \quad$ Among the 15 testees, 7 do not have the disease.
(c) $P\left(T_{P}\right)=\frac{7}{15} \quad$ Among the 15 testees, 7 test positive.
(d) $P\left(T_{P}^{c}\right)=\frac{8}{15} \quad$ Among the 15 testees, 8 test negative.
(e) $P\left(T_{P} \mid D\right)=\frac{2}{8}=\frac{1}{4}$ Among the 8 testees who have the disease, two test positive.
(f) $P\left(T_{P} \mid D^{c}\right)=\frac{5}{7} \quad$ Among the 7 testees who don't have the disease, 5 test positive.
(g) $P\left(T_{P}^{c} \mid D\right)=\frac{6}{8}=\frac{3}{4} \quad$ Among the 8 testees who have the disease, 6 test negative.
(h) $P\left(T_{P}^{c} \mid D^{c}\right)=\frac{2}{7} \quad$ Among the 7 testees who don't have the disease, 2 test positive.

